
MITO[®] **E-F** The World's Only Hybrid Graphene

PARTICLE SIZE

PRODUCT DATA & PHYSICAL PROPERTIES

Physical Form:	Powder
Density:	0.03 - 0.08 g/cm ³
Appearance:	Black
Polymer Sites:	Oxirane Epoxy
Loading Ranges:	0.05% - 1.5% wt of polymer
Carbon Content:	48 - 55%
Oxygen Content:	28 - 33%

COLLABORATION

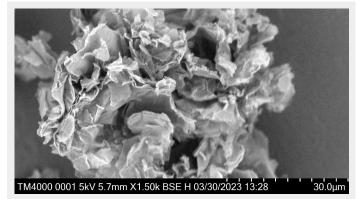
EXPLORE

We want to work with you and know your story. MITO[®] partners with a variety of industries interested in enhancing material performance. In order for us to help, we need to understand your current materials, processes, and goals so we can recommend the best MITO[®] solution for your needs.

EVALUATE

Once we establish the benchmarks in your polymer system, MITO[®] can create samples and deliver a custom data set showing a direct comparison. If preferred, our team can also work directly with your team at your facility.

COLLABORATE


MITO[®] solutions are designed to integrate into the base polymer – before part production – and can be distributed commercially via direct sales or by distributing through your polymer supplier/compounder. This ensures seamless integration into your supply chain without added time or process interruption.

INTEGRATION

E-GO[™] is designed to be a highly versatile material that integrates into current processes:

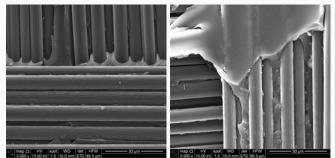
- Powder + Shear Mix
- Powder + Compound
- Spray Applications
- Masterbatched into Your Resin
- Through Your Resin Distributor

SEM MAGNIFICATION

ENABLE THE NEXT MATERIAL EVOLUTION WITH MITO INSIDETM

E-GO[™] in Epoxy + Carbon Fiber Systems

MITO[®] Material Solutions' flagship product, E-GO, has been designed with versatility, realistic solutions, and accessibility in mind. E-GO is a hybridized graphene oxide/POSS additive which reactively disperses while resisting agglomeration -- unlocking the properties of graphene for various industries by both utilizing thermoset and thermoplastic polymer composites. With a MITO Powered[™] epoxy + carbon fiber composite, you can create a stronger, lighter component that transfers less vibrations and less noise to the user.


DISPERSION & INTEGRATION

E-GO has been designed to seamlessly integrate into your manufacturing method:

- Shear mixing
- Three roll milling
- Spray applications

Simply measure and mix as normal **at loadings as low as 0.1%** by weight of resin.

SEM 5000X MAG | FIBER-MATRIX ADHESION

Within a carbon fiber pre-preg system: Control (left), Same with 0.1%wt E-GO (right)

COLLABORATION

EXPLORE

We want to work with you and know your story. MITO partners with a variety of industries interested in enhancing material performance. In order for us to help, we need to understand your current materials, processes, and goals so we can recommend the best MITO solution for your needs.

EVALUATE

Once we establish the benchmarks in your polymer system, MITO can create samples and deliver a custom data set showing a direct comparison. If preferred, our team can also work directly with your team at your facility.

COLLABORATE

MITO solutions are designed to integrate into the base polymer – before part production – and can be distributed commercially via direct sales or by distributing through your polymer supplier/compounder. This ensures seamless integration into your supply chain without added time or process interruption.

MAKE YOUR COMPOSITES TOUGHER AND LIGHTER THAN EVER BEFORE

TESTING METHOD	PROPERTY	UNITS	CONTROL	0.1%wt E-GO	% DIFFERENCE
	Maximum force withstood	kN	-	-	-
TENSILE	Modulus at break	MPa	-	-	-
	Strain at break	%	-	-	-
	Maximum force withstood	kN	0.55	0.68	21%
FLEXURAL ¹					
ASTM D790	Modulus at break	MPa	59356	63955	7%
	Strain at break	%	1.46	1.86	26%
	Maximum force withstood	LNI			
COMPRESSION		kN	-	-	-
	Modulus at break	MPa	-	-	-
	Strain at break	%	-	-	-
IMPACT	Izod impact resistance	J/m			
IMPACI		J/111	-	-	-
FRACTURE TOUGHNESS ² ASTM D3433	Gıc	kJ / m²	0.72	1.25	54%
	Storage modulus	MPa	10000	9473	-5%
DYNAMIC MECHANICAL ¹ ASTM D7028	Viscous modulus	MPa	10000	5475	370
		МРа	-	-	-
	Dampening coefficient		-	-	-
GLASS TRANSITION ¹	T _G	°C	96	96	0%
	-				
ELECTRICAL RESISTIVITY י ASTM D257	Resistivity through plane	Ohm · m	0.43	1.36	104%
	Resistivity in plane	Ohm∙m	3.20E-04	2.33E-03	152%

*All tests were conducted according to ASTM standards.

/+ Samples: 2x2 twill carbon fiber, BPA epoxy, post cured 100 °C for 2 hrs, 50% RH

Samples: TCR UF3352 Pre-preg carbon fiber, cured via hot press according to product specification

Not seeing a property you need? Contact MITO with any inquiries and our highly trained team will work with you and your engineers to design a study with your specific material requirements in mind.

E-GO[™] in Polypropylene

MITO[®] Material Solutions' flagship product, E-GO, has been designed with versatility, realistic solutions, and accessibility in mind. E-GO is a hybridized graphene oxide/POSS additive which reactively disperses while resisting agglomeration -- unlocking the properties of graphene for various industries by utilizing both thermoset and thermoplastic polymer composites. With a MITO Powered[™] polypropylene, you can create an engineered plastic with a higher amount of recycled content that outperforms competitors.

DISPERSION & INTEGRATION

E-GO has been designed to seamlessly integrate into your manufacturing method - from beginning to end - without introducing processing difficulties.

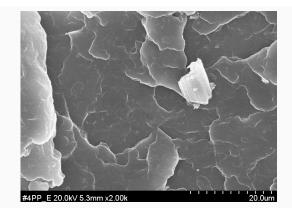
- Compounding
- Injection molding
- Blow molding
- SLA/FDM

Simply measure and mix as normal **at loadings as low as 0.1%** by weight of polymer.

COLLABORATION

EXPLORE

We want to work with you and know your story. MITO partners with a variety of industries interested in enhancing material performance. In order for us to help, we need to understand your current materials, processes, and goals so we can recommend the best MITO solution for your needs.


EVALUATE

Once we establish the benchmarks in your polymer system, MITO can create samples and deliver a custom data set showing a direct comparison. If preferred, our team can also work directly with your team at your facility.

COLLABORATE

MITO solutions are designed to integrate into the base polymer – before part production – and can be distributed commercially via direct sales or by distributing through your polymer supplier/compounder. This ensures seamless integration into your supply chain without added time or process interruption.

SEM 2000X MAG | E-GO PARTICLE WITHIN PP

OUTPERFORM YOUR COMPETITORS WITH THE NEXT GENERATION MATERIALS

TESTING METHOD	PROPERTY	UNITS	NEAT	0.1%wt E-GO	% DIFFERENCE
TENSILE ASTM D638	Maximum force withstood	kN	21.60	30.90	35%
	Modulus at break	MPa	1470	1680	13%
	Strain at break	%	27.89	5.18	-137%
	Maximum force withstood	kN	0.06	0.07	15%
FLEXURAL ASTM D790	Modulus at break	MPa	1095	1183	8%
	Strain at break	%	2.18	2.25	3%
COMPRESSION	Maximum force withstood	kN	-	-	-
	Modulus at break	MPa	-	-	-
	Strain at break	%	-	-	-
ІМРАСТ	Izod impact resistance	J/m	-	-	-
FRACTURE TOUGHNESS	Gıc	kJ / m²	-	-	-
	Storage modulus	MPa	2420	2520	4%
DYNAMIC MECHANICAL ASTM D7028	Viscous modulus	MPa	_		_
	Dampening coefficient	in a	_	_	_
GLASS TRANSITION TEMP	Tc	°C	15.81	16.67	5%
ELECTRICAL RESISTIVITY	Resistivity through plane	Ohm · m	1.80E+14	2.00E+11	-200%
ASTM D257	Resistivity in plane	Ohm · m	-	-	-

* All tests were conducted according to ASTM standards.

**Samples: SABIC 595a via injection molding

Not seeing a property you need? Contact MITO with any inquiries and our highly trained team will work with you and your engineers to design a study with your specific material requirements in mind.

E-GO™ in Polyester+Glass Fiber Systems

MITO[®] Material Solutions' flagship product, E-GO, has been designed with versatility, realistic solutions, and accessibility in mind. E-GO is a hybridized graphene oxide/POSS additive which reactively disperses while resisting agglomeration -- unlocking the properties of graphene for various industries by utilizing both thermoset and thermoplastic polymer composites. Using a MITO Powered[™] polyester system, you can replace harder to handle vinyl ester to create high performing, low cost composites to enable the next generation of materials.

DISPERSION & INTEGRATION

E-GO has been designed to seamlessly integrate into your manufacturing method:

- Shear mixing
- Three roll milling
- Spray applications

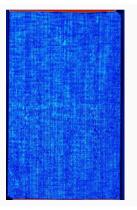
Simply measure and mix as normal **at loadings as low as 0.1%** by weight of resin.

COLLABORATION

EXPLORE

We want to work with you and know your story. MITO partners with a variety of industries interested in enhancing material performance. In order for us to help, we need to understand your current materials, processes, and goals so we can recommend the best MITO solution for your needs.

EVALUATE


Once we establish the benchmarks in your polymer system, MITO can create samples and deliver a custom data set showing a direct comparison. If preferred, our team can also work directly with your team at your facility.

COLLABORATE

MITO solutions are designed to integrate into the base polymer – before part production – and can be distributed commercially via direct sales or by distributing through your polymer supplier/compounder. This ensures seamless integration into your supply chain without added time or process interruption.

ULTRASONIC DENSITY CHECK: 0.1%WT E-GO

LEFT: IMAGE OF PANEL RIGHT: ULTRASONIC CHECK OF SAME

CREATE CUTTING EDGE, EASY-TO-USE MATERIALS WITH E-GO

TESTING METHOD	PROPERTY	UNITS	CONTROL	0.1%wt E-GO	% DIFFERENCE
	Maximum force withstood	kN	234.42	314.40	29%
TENSILE ASTM D3039	Modulus at break	MPa	19650	21650	10%
A21MI D2022	Strain at break	%	-	-	-
	Maximum force withstood	kN	0.17	0.21	21%
FLEXURAL ASTM D790	Modulus at break	MPa	21959	34743	45%
	Strain at break	%	0.5	0.4	-22%
COMPRESSION	Maximum force withstood	kN	195.81	162.72	-18%
ASTM D6641	Modulus at break	MPa	24821	22753	-9%
	Strain at break	%	0.85	0.77	-9%
IMPACT ASTM D256	Izod impact resistance	J/m	1126	1004	-12%
FRACTURE TOUGHNESS	Gıc	kJ / m²	-	-	-
	Storage modulus	MPa	1556	2026	26%
DYNAMIC MECHANICAL ASTM D7028	Viscous modulus	MPa	-	-	-
//SHM D7020	Dampening coefficient		0.76	0.72	-5%
GLASS TRANSITION TEMP					
ASTM D7028	T _G	°C	93	105	12%
		Ohm			
ELECTRICAL RESISTIVITY	Resistivity through plane	Ohm · m	-	-	-
	Resistivity in plane	Ohm∙m		-	

* All tests were conducted according to ASTM standards.

**Samples: DCPD polyester, 1.5% MEKP, 2x2 Twill FG made via hand layup

Not seeing a property you need? Contact MITO with any inquiries and our team will work with you and your engineers to design a study with your specific material requirements in mind.

